Tracking and Labelling of Interacting Multiple Targets
نویسندگان
چکیده
Successful multi-target tracking requires solving two problems localize the targets and label their identity. An isolated target’s identity can be unambiguously preserved from one frame to the next. However, for long sequences of many moving targets, like a football game, grouping scenarios will occur in which identity labellings cannot be maintained reliably by using continuity of motion or appearance. This paper describes how to match targets’ identities despite these interactions. Trajectories of when a target is isolated are found. These trajectories end when targets interact and their labellings cannot be maintained. The interactions (merges and splits) of these trajectories form a graph structure. Appropriate feature vectors summarizing particular qualities of each trajectory are extracted. A clustering procedure based on these feature vectors allows the identities of temporally separated trajectories to be matched. Results are shown from a football match captured by a wide screen system giving a full stationary view of the pitch.
منابع مشابه
Multiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملMultiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization
A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...
متن کاملA Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کاملAn Adaptive Particle Filter Method for Tracking Multiple Interacting Targets
In this paper, we present a new adaptive particle filter method for tracking multiple interacting targets. We introduce a sampling strategy to consecutively sample particles and adapt their spreading according to current measurements. For multiple targets, we develop a new concept of guiding the particles by current measurements of adjacent targets. Our method does not increase the computationa...
متن کاملVision-Based Multiple Interacting Targets Tracking via On-Line Supervised Learning
Successful multi-target tracking requires locating the targets and labeling their identities. This mission becomes significantly more challenging when many targets frequently interact with each other (present partial or complete occlusions). This paper presents an on-line supervised learning based method for tracking multiple interacting targets. When the targets do not interact with each other...
متن کامل